font
Ramchurn, Sarvapali; Osborne, Michael; Parson, Oliver; Rahwan, Talal; Maleki, Sasan; Reece, Steve; Huynh, Trung Dong; Alam, Muddasser; Fischer, Joel; Rodden, Tom; Moreau, Luc; Roberts, Sephen
AgentSwitch: towards smart electricity tariff selection Proceedings Article
In: 12th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2013), International Foundation for Autonomous Agents and Multiagent Systems, 2013.
Abstract | Links | BibTeX | Tags: electricity, Energy, group buying, optimisation, provenance, recommender systems, smart grid
@inproceedings{eps349815,
title = {AgentSwitch: towards smart electricity tariff selection},
author = {Sarvapali Ramchurn and Michael Osborne and Oliver Parson and Talal Rahwan and Sasan Maleki and Steve Reece and Trung Dong Huynh and Muddasser Alam and Joel Fischer and Tom Rodden and Luc Moreau and Sephen Roberts},
url = {http://eprints.soton.ac.uk/349815/},
year = {2013},
date = {2013-01-01},
booktitle = {12th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2013)},
publisher = {International Foundation for Autonomous Agents and Multiagent Systems},
abstract = {In this paper, we present AgentSwitch, a prototype agent-based platform to solve the electricity tariff selection problem. AgentSwitch incorporates novel algorithms to make predictions of hourly energy usage as well as detect (and suggest to the user) deferrable loads that could be shifted to off-peak times to maximise savings. To take advantage of group discounts from energy retailers, we develop a new scalable collective energy purchasing mechanism, based on the Shapley value, that ensures individual members of a collective (interacting through AgentSwitch) fairly share the discounts. To demonstrate the effectiveness of our algorithms we empirically evaluate them individually on real-world data (with up to 3000 homes in the UK) and show that they outperform the state of the art in their domains. Finally, to ensure individual components are accountable in providing recommendations, we provide a novel provenance-tracking service to record the ?ow of data in the system, and therefore provide users with a means of checking the provenance of suggestions from AgentSwitch and assess their reliability.},
keywords = {electricity, Energy, group buying, optimisation, provenance, recommender systems, smart grid},
pubstate = {published},
tppubtype = {inproceedings}
}
Ramchurn, Sarvapali; Osborne, Michael; Parson, Oliver; Rahwan, Talal; Maleki, Sasan; Reece, Steve; Huynh, Trung Dong; Alam, Muddasser; Fischer, Joel; Rodden, Tom; Moreau, Luc; Roberts, Sephen
AgentSwitch: towards smart electricity tariff selection Proceedings Article
In: 12th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2013), International Foundation for Autonomous Agents and Multiagent Systems, 2013.
@inproceedings{eps349815,
title = {AgentSwitch: towards smart electricity tariff selection},
author = {Sarvapali Ramchurn and Michael Osborne and Oliver Parson and Talal Rahwan and Sasan Maleki and Steve Reece and Trung Dong Huynh and Muddasser Alam and Joel Fischer and Tom Rodden and Luc Moreau and Sephen Roberts},
url = {http://eprints.soton.ac.uk/349815/},
year = {2013},
date = {2013-01-01},
booktitle = {12th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2013)},
publisher = {International Foundation for Autonomous Agents and Multiagent Systems},
abstract = {In this paper, we present AgentSwitch, a prototype agent-based platform to solve the electricity tariff selection problem. AgentSwitch incorporates novel algorithms to make predictions of hourly energy usage as well as detect (and suggest to the user) deferrable loads that could be shifted to off-peak times to maximise savings. To take advantage of group discounts from energy retailers, we develop a new scalable collective energy purchasing mechanism, based on the Shapley value, that ensures individual members of a collective (interacting through AgentSwitch) fairly share the discounts. To demonstrate the effectiveness of our algorithms we empirically evaluate them individually on real-world data (with up to 3000 homes in the UK) and show that they outperform the state of the art in their domains. Finally, to ensure individual components are accountable in providing recommendations, we provide a novel provenance-tracking service to record the ?ow of data in the system, and therefore provide users with a means of checking the provenance of suggestions from AgentSwitch and assess their reliability.},
keywords = {},
pubstate = {published},
tppubtype = {inproceedings}
}
Ramchurn, Sarvapali; Osborne, Michael; Parson, Oliver; Rahwan, Talal; Maleki, Sasan; Reece, Steve; Huynh, Trung Dong; Alam, Muddasser; Fischer, Joel; Rodden, Tom; Moreau, Luc; Roberts, Sephen
AgentSwitch: towards smart electricity tariff selection Proceedings Article
In: 12th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2013), International Foundation for Autonomous Agents and Multiagent Systems, 2013.
Abstract | Links | BibTeX | Tags: electricity, Energy, group buying, optimisation, provenance, recommender systems, smart grid
@inproceedings{eps349815,
title = {AgentSwitch: towards smart electricity tariff selection},
author = {Sarvapali Ramchurn and Michael Osborne and Oliver Parson and Talal Rahwan and Sasan Maleki and Steve Reece and Trung Dong Huynh and Muddasser Alam and Joel Fischer and Tom Rodden and Luc Moreau and Sephen Roberts},
url = {http://eprints.soton.ac.uk/349815/},
year = {2013},
date = {2013-01-01},
booktitle = {12th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2013)},
publisher = {International Foundation for Autonomous Agents and Multiagent Systems},
abstract = {In this paper, we present AgentSwitch, a prototype agent-based platform to solve the electricity tariff selection problem. AgentSwitch incorporates novel algorithms to make predictions of hourly energy usage as well as detect (and suggest to the user) deferrable loads that could be shifted to off-peak times to maximise savings. To take advantage of group discounts from energy retailers, we develop a new scalable collective energy purchasing mechanism, based on the Shapley value, that ensures individual members of a collective (interacting through AgentSwitch) fairly share the discounts. To demonstrate the effectiveness of our algorithms we empirically evaluate them individually on real-world data (with up to 3000 homes in the UK) and show that they outperform the state of the art in their domains. Finally, to ensure individual components are accountable in providing recommendations, we provide a novel provenance-tracking service to record the ?ow of data in the system, and therefore provide users with a means of checking the provenance of suggestions from AgentSwitch and assess their reliability.},
keywords = {electricity, Energy, group buying, optimisation, provenance, recommender systems, smart grid},
pubstate = {published},
tppubtype = {inproceedings}
}
Ramchurn, Sarvapali; Osborne, Michael; Parson, Oliver; Rahwan, Talal; Maleki, Sasan; Reece, Steve; Huynh, Trung Dong; Alam, Muddasser; Fischer, Joel; Rodden, Tom; Moreau, Luc; Roberts, Sephen
AgentSwitch: towards smart electricity tariff selection Proceedings Article
In: 12th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2013), International Foundation for Autonomous Agents and Multiagent Systems, 2013.
@inproceedings{eps349815,
title = {AgentSwitch: towards smart electricity tariff selection},
author = {Sarvapali Ramchurn and Michael Osborne and Oliver Parson and Talal Rahwan and Sasan Maleki and Steve Reece and Trung Dong Huynh and Muddasser Alam and Joel Fischer and Tom Rodden and Luc Moreau and Sephen Roberts},
url = {http://eprints.soton.ac.uk/349815/},
year = {2013},
date = {2013-01-01},
booktitle = {12th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2013)},
publisher = {International Foundation for Autonomous Agents and Multiagent Systems},
abstract = {In this paper, we present AgentSwitch, a prototype agent-based platform to solve the electricity tariff selection problem. AgentSwitch incorporates novel algorithms to make predictions of hourly energy usage as well as detect (and suggest to the user) deferrable loads that could be shifted to off-peak times to maximise savings. To take advantage of group discounts from energy retailers, we develop a new scalable collective energy purchasing mechanism, based on the Shapley value, that ensures individual members of a collective (interacting through AgentSwitch) fairly share the discounts. To demonstrate the effectiveness of our algorithms we empirically evaluate them individually on real-world data (with up to 3000 homes in the UK) and show that they outperform the state of the art in their domains. Finally, to ensure individual components are accountable in providing recommendations, we provide a novel provenance-tracking service to record the ?ow of data in the system, and therefore provide users with a means of checking the provenance of suggestions from AgentSwitch and assess their reliability.},
keywords = {},
pubstate = {published},
tppubtype = {inproceedings}
}
Multi-agent signal-less intersection management with dynamic platoon formationĀ
AI Foundation Models: initial review, CMA Consultation, TAS Hub ResponseĀ
The effect of data visualisation quality and task density on human-swarm interaction
Demonstrating performance benefits of human-swarm teamingĀ
Ramchurn, Sarvapali; Osborne, Michael; Parson, Oliver; Rahwan, Talal; Maleki, Sasan; Reece, Steve; Huynh, Trung Dong; Alam, Muddasser; Fischer, Joel; Rodden, Tom; Moreau, Luc; Roberts, Sephen
AgentSwitch: towards smart electricity tariff selection Proceedings Article
In: 12th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2013), International Foundation for Autonomous Agents and Multiagent Systems, 2013.
@inproceedings{eps349815,
title = {AgentSwitch: towards smart electricity tariff selection},
author = {Sarvapali Ramchurn and Michael Osborne and Oliver Parson and Talal Rahwan and Sasan Maleki and Steve Reece and Trung Dong Huynh and Muddasser Alam and Joel Fischer and Tom Rodden and Luc Moreau and Sephen Roberts},
url = {http://eprints.soton.ac.uk/349815/},
year = {2013},
date = {2013-01-01},
booktitle = {12th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2013)},
publisher = {International Foundation for Autonomous Agents and Multiagent Systems},
abstract = {In this paper, we present AgentSwitch, a prototype agent-based platform to solve the electricity tariff selection problem. AgentSwitch incorporates novel algorithms to make predictions of hourly energy usage as well as detect (and suggest to the user) deferrable loads that could be shifted to off-peak times to maximise savings. To take advantage of group discounts from energy retailers, we develop a new scalable collective energy purchasing mechanism, based on the Shapley value, that ensures individual members of a collective (interacting through AgentSwitch) fairly share the discounts. To demonstrate the effectiveness of our algorithms we empirically evaluate them individually on real-world data (with up to 3000 homes in the UK) and show that they outperform the state of the art in their domains. Finally, to ensure individual components are accountable in providing recommendations, we provide a novel provenance-tracking service to record the ?ow of data in the system, and therefore provide users with a means of checking the provenance of suggestions from AgentSwitch and assess their reliability.},
keywords = {},
pubstate = {published},
tppubtype = {inproceedings}
}