font
Vytelingum, Perukrishnen; Voice, Thomas D.; Ramchurn, Sarvapali D.; Rogers, Alex; Jennings, Nicholas R.
Agent-Based Micro-Storage Management for the Smart Grid Proceedings Article
In: The Ninth International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2010) - Won the Best Paper Award, pp. 39–46, 2010, (Winner of the Best Paper Award Event Dates: May 10-14, 2010).
Abstract | Links | BibTeX | Tags: agent-based modelling, agents, Energy, game-theory, smart grid
@inproceedings{eps268360,
title = {Agent-Based Micro-Storage Management for the Smart Grid},
author = {Perukrishnen Vytelingum and Thomas D. Voice and Sarvapali D. Ramchurn and Alex Rogers and Nicholas R. Jennings},
url = {http://eprints.soton.ac.uk/268360/},
year = {2010},
date = {2010-01-01},
booktitle = {The Ninth International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2010) - Won the Best Paper Award},
pages = {39–46},
abstract = {The use of energy storage devices in homes has been advocated as one of the main ways of saving energy and reducing the reliance on fossil fuels in the future Smart Grid. However, if micro-storage devices are all charged at the same time using power from the electricity grid, it means a higher demand and, hence, more generation capacity, more carbon emissions, and, in the worst case, breaking down the system due to over-demand. To alleviate such issues, in this paper, we present a novel agent-based micro-storage management technique that allows all (individually-owned) storage devices in the system to converge to profitable, efficient behaviour. Specifically, we provide a general framework within which to analyse the Nash equilibrium of an electricity grid and devise new agent-based storage learning strategies that adapt to market conditions. Taken altogether, our solution shows that, specifically, in the UK electricity market, it is possible to achieve savings of up to 13% on average for a consumer on his electricity bill with a storage device of 4 kWh. Moreover, we show that there exists an equilibrium where only 38% of UK households would own storage devices and where social welfare would be also maximised (with an overall annual savings of nearly GBP 1.5B at that equilibrium).},
note = {Winner of the Best Paper Award Event Dates: May 10-14, 2010},
keywords = {agent-based modelling, agents, Energy, game-theory, smart grid},
pubstate = {published},
tppubtype = {inproceedings}
}
Vytelingum, Perukrishnen; Voice, Thomas D.; Ramchurn, Sarvapali D.; Rogers, Alex; Jennings, Nicholas R.
Agent-Based Micro-Storage Management for the Smart Grid Proceedings Article
In: The Ninth International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2010) - Won the Best Paper Award, pp. 39–46, 2010, (Winner of the Best Paper Award Event Dates: May 10-14, 2010).
@inproceedings{eps268360,
title = {Agent-Based Micro-Storage Management for the Smart Grid},
author = {Perukrishnen Vytelingum and Thomas D. Voice and Sarvapali D. Ramchurn and Alex Rogers and Nicholas R. Jennings},
url = {http://eprints.soton.ac.uk/268360/},
year = {2010},
date = {2010-01-01},
booktitle = {The Ninth International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2010) - Won the Best Paper Award},
pages = {39–46},
abstract = {The use of energy storage devices in homes has been advocated as one of the main ways of saving energy and reducing the reliance on fossil fuels in the future Smart Grid. However, if micro-storage devices are all charged at the same time using power from the electricity grid, it means a higher demand and, hence, more generation capacity, more carbon emissions, and, in the worst case, breaking down the system due to over-demand. To alleviate such issues, in this paper, we present a novel agent-based micro-storage management technique that allows all (individually-owned) storage devices in the system to converge to profitable, efficient behaviour. Specifically, we provide a general framework within which to analyse the Nash equilibrium of an electricity grid and devise new agent-based storage learning strategies that adapt to market conditions. Taken altogether, our solution shows that, specifically, in the UK electricity market, it is possible to achieve savings of up to 13% on average for a consumer on his electricity bill with a storage device of 4 kWh. Moreover, we show that there exists an equilibrium where only 38% of UK households would own storage devices and where social welfare would be also maximised (with an overall annual savings of nearly GBP 1.5B at that equilibrium).},
note = {Winner of the Best Paper Award Event Dates: May 10-14, 2010},
keywords = {},
pubstate = {published},
tppubtype = {inproceedings}
}
Vytelingum, Perukrishnen; Voice, Thomas D.; Ramchurn, Sarvapali D.; Rogers, Alex; Jennings, Nicholas R.
Agent-Based Micro-Storage Management for the Smart Grid Proceedings Article
In: The Ninth International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2010) - Won the Best Paper Award, pp. 39–46, 2010, (Winner of the Best Paper Award Event Dates: May 10-14, 2010).
Abstract | Links | BibTeX | Tags: agent-based modelling, agents, Energy, game-theory, smart grid
@inproceedings{eps268360,
title = {Agent-Based Micro-Storage Management for the Smart Grid},
author = {Perukrishnen Vytelingum and Thomas D. Voice and Sarvapali D. Ramchurn and Alex Rogers and Nicholas R. Jennings},
url = {http://eprints.soton.ac.uk/268360/},
year = {2010},
date = {2010-01-01},
booktitle = {The Ninth International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2010) - Won the Best Paper Award},
pages = {39–46},
abstract = {The use of energy storage devices in homes has been advocated as one of the main ways of saving energy and reducing the reliance on fossil fuels in the future Smart Grid. However, if micro-storage devices are all charged at the same time using power from the electricity grid, it means a higher demand and, hence, more generation capacity, more carbon emissions, and, in the worst case, breaking down the system due to over-demand. To alleviate such issues, in this paper, we present a novel agent-based micro-storage management technique that allows all (individually-owned) storage devices in the system to converge to profitable, efficient behaviour. Specifically, we provide a general framework within which to analyse the Nash equilibrium of an electricity grid and devise new agent-based storage learning strategies that adapt to market conditions. Taken altogether, our solution shows that, specifically, in the UK electricity market, it is possible to achieve savings of up to 13% on average for a consumer on his electricity bill with a storage device of 4 kWh. Moreover, we show that there exists an equilibrium where only 38% of UK households would own storage devices and where social welfare would be also maximised (with an overall annual savings of nearly GBP 1.5B at that equilibrium).},
note = {Winner of the Best Paper Award Event Dates: May 10-14, 2010},
keywords = {agent-based modelling, agents, Energy, game-theory, smart grid},
pubstate = {published},
tppubtype = {inproceedings}
}
Vytelingum, Perukrishnen; Voice, Thomas D.; Ramchurn, Sarvapali D.; Rogers, Alex; Jennings, Nicholas R.
Agent-Based Micro-Storage Management for the Smart Grid Proceedings Article
In: The Ninth International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2010) - Won the Best Paper Award, pp. 39–46, 2010, (Winner of the Best Paper Award Event Dates: May 10-14, 2010).
@inproceedings{eps268360,
title = {Agent-Based Micro-Storage Management for the Smart Grid},
author = {Perukrishnen Vytelingum and Thomas D. Voice and Sarvapali D. Ramchurn and Alex Rogers and Nicholas R. Jennings},
url = {http://eprints.soton.ac.uk/268360/},
year = {2010},
date = {2010-01-01},
booktitle = {The Ninth International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2010) - Won the Best Paper Award},
pages = {39–46},
abstract = {The use of energy storage devices in homes has been advocated as one of the main ways of saving energy and reducing the reliance on fossil fuels in the future Smart Grid. However, if micro-storage devices are all charged at the same time using power from the electricity grid, it means a higher demand and, hence, more generation capacity, more carbon emissions, and, in the worst case, breaking down the system due to over-demand. To alleviate such issues, in this paper, we present a novel agent-based micro-storage management technique that allows all (individually-owned) storage devices in the system to converge to profitable, efficient behaviour. Specifically, we provide a general framework within which to analyse the Nash equilibrium of an electricity grid and devise new agent-based storage learning strategies that adapt to market conditions. Taken altogether, our solution shows that, specifically, in the UK electricity market, it is possible to achieve savings of up to 13% on average for a consumer on his electricity bill with a storage device of 4 kWh. Moreover, we show that there exists an equilibrium where only 38% of UK households would own storage devices and where social welfare would be also maximised (with an overall annual savings of nearly GBP 1.5B at that equilibrium).},
note = {Winner of the Best Paper Award Event Dates: May 10-14, 2010},
keywords = {},
pubstate = {published},
tppubtype = {inproceedings}
}
Multi-agent signal-less intersection management with dynamic platoon formation
AI Foundation Models: initial review, CMA Consultation, TAS Hub Response
The effect of data visualisation quality and task density on human-swarm interaction
Demonstrating performance benefits of human-swarm teaming
Vytelingum, Perukrishnen; Voice, Thomas D.; Ramchurn, Sarvapali D.; Rogers, Alex; Jennings, Nicholas R.
Agent-Based Micro-Storage Management for the Smart Grid Proceedings Article
In: The Ninth International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2010) - Won the Best Paper Award, pp. 39–46, 2010, (Winner of the Best Paper Award Event Dates: May 10-14, 2010).
@inproceedings{eps268360,
title = {Agent-Based Micro-Storage Management for the Smart Grid},
author = {Perukrishnen Vytelingum and Thomas D. Voice and Sarvapali D. Ramchurn and Alex Rogers and Nicholas R. Jennings},
url = {http://eprints.soton.ac.uk/268360/},
year = {2010},
date = {2010-01-01},
booktitle = {The Ninth International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2010) - Won the Best Paper Award},
pages = {39–46},
abstract = {The use of energy storage devices in homes has been advocated as one of the main ways of saving energy and reducing the reliance on fossil fuels in the future Smart Grid. However, if micro-storage devices are all charged at the same time using power from the electricity grid, it means a higher demand and, hence, more generation capacity, more carbon emissions, and, in the worst case, breaking down the system due to over-demand. To alleviate such issues, in this paper, we present a novel agent-based micro-storage management technique that allows all (individually-owned) storage devices in the system to converge to profitable, efficient behaviour. Specifically, we provide a general framework within which to analyse the Nash equilibrium of an electricity grid and devise new agent-based storage learning strategies that adapt to market conditions. Taken altogether, our solution shows that, specifically, in the UK electricity market, it is possible to achieve savings of up to 13% on average for a consumer on his electricity bill with a storage device of 4 kWh. Moreover, we show that there exists an equilibrium where only 38% of UK households would own storage devices and where social welfare would be also maximised (with an overall annual savings of nearly GBP 1.5B at that equilibrium).},
note = {Winner of the Best Paper Award Event Dates: May 10-14, 2010},
keywords = {},
pubstate = {published},
tppubtype = {inproceedings}
}